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Abstract. The quantum statistical mechanics of an ideal relativistic Bose gas of massive 
particles is discussed. The thermodynamic functions of the system are obtained from the 
exact expression for the logarithm of the grand partition function. The correct procedure 
for carrying out the non-relativistic and ultra-relativistic limits is presented. The limitations 
and errors of previous calculations which relied on the binomial expansion of the density of 
states are pointed out. It is shown that the behaviour of the system in the limit of zero 
temperature is dominated by the non-relativistic effects. 

1. Introduction 

Ideal gases are a valuable tool in obtaining information about a great many physical 
situations. In weakly interacting systems they provide a qualitative understanding of 
several important features and also serve as a basis for the development of a pertur- 
bative scheme. The quantum statistics of ideal gases has been used extensively to 
describe both fermion and boson systems. Electrons in metals, liquid helium and 
superconductors are just a few examples where a non-relativistic treatment has been 
successfully used in explaining some remarkable features such as the existence of a 
Fermi surface in metals and the occurrence of a phase transition (Bose-Einstein 
condensation) in both helium and superconductors (condensation of Cooper pairs). 
Astrophysical systems, however, require a fully relativistic treatment. The most 
notable examples are white dwarfs and neutron stars. In the former, the degeneracy 
pressure of an electron gas stabilises the star against gravitational collapse, while it has 
been conjectured that pion condensation occurs in the interior of neutron stars. 

Even though the quantum statistical mechanics of the ideal relativistic boson gas has 
received considerable attention in the past (in fact, the birth of quantum statistics is 
marked by Bose’s derivation of Planck’s law of blackbody radiation and the first 
analyses of a relativistic gas of massive particles go way back to Juttner (1928) and 
Glaser (1935) and, more recently, to Landsberg and Dunning-Davies (1965)), it is our 
opinion that certain difficulties concerning the ultra-relativistic regime of the system 
deserve a careful discussion in order to avoid unreliable procedures contained in the 
earlier works. Quite recently, Kuzmin and Shaposhnikov (1979) have explored the 
cosmological implications of a massive primordial photon gas thus turning the study of 
the behaviour of boson gases in the extreme conditions of the ultra-relativistic limit into 
a matter of current interest. Here we present a treatment of the problem which 
reproduces all the known results and allows us to detect mistakes and correct the results 
of previous analyses of the ultra-relativistic limit. In 0 2 the formalism and the exact 
formulae for the thermodynamic functions are shown. In 0 3 we show how the different 
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approximations of the exact results are correctly obtained with the help of the relations 
among the three relevant lengths of the system. For this purpose a generalised thermal 
wavelength is introduced. In § 4 the behaviour of the ultra-relativistic gas is obtained. 
This approach has led us to conclude that the massless particle gas is the only truly 
ultra-relativistic system at any temperature or, equivalently, that the behaviour of a 
massive particle gas at very low temperature ( k g T  << mc2) is of a non-relativistic nature. 

2. The formalism and exact results 

We begin by writing the logarithm of the grand partition function of the ideal boson gas 
as an integral transform of the single particle partition function Zl(p) (Goulart Rosa 
and Grandy 1973) 

where P-’ = kBT,  [ is the chemical potential, a E (0, 1). In order to calculate Z, (p)  = 
Xi exp(-@Ei) let us consider the gas contained in a cubic box of volume V = L3. 
According to quantum mechanics, the particle energy takes the discrete values 

E’ = (hck)’+ m2c4,  

ki = 2rni/ L 
(2) 

ni = 0 ,  *l ,  k 2 , .  . . i = 1 ,2 ,3 ,  

where we have imposed periodic boundary conditions on the wavefunctions. The 
number of states with energy between E and E + d E  is then given by 

4 r v g  2 4 1/2 

(hc)  
D ( E ) = y [ E 2 - m  c ] E (3) 

where g = ( 2 s  + 1 )  is the spin degeneracy. Replacing the summation over the particle 
states index j by an integration involving the density of states, we obtain 

zi ( p  ) = ( 4 r  Vg/A 2 ) (&(U )/ U (4) 

where A, = h /mc  is the Compton wavelength, U = pmc2 and K2 is the modified Bessel 
function. The expression for D ( E )  contains only the bulk term and as usual this is 
justified in the limit of large volumes; in doing so we have discarded ab initio all 
questions concerning boundary effects on the behaviour of the system. (The sensitivity 
of the Bose-Einstein condensation to boundary conditions, in the non-relativistic case, 
was shown by Landau and Wilde (1979). They show that whereas periodic Dirichlet, 
Neumann and ‘repulsive wall’ conditions lead to the same density of condensate, the 
‘attractive wall’ conditions lead to a different answer.) 

We recall that the modified Bessel functions K,(t) are regular functions throughout 
the t-plane cut along the negative axis and are real and positive when v > -1 and t > 0. 
The asymptotic expansion for large argument and the ascending series from which one 
can obtain the behaviour in the limit of t -$ 0 are, respectively: 

+. . .] ( 5 )  
4v2 - 1 (4v2 - 1)(4v2 - 9) + 

2!(8t)’ 
~ ~ ( t )  - (r/2t)1’2 exp(-t) 1 +- [ 8 t  
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where $(k) is the logarithmic derivative of the gamma function r(k) and 

Bearing in mind that the energy in equation (2) contains the particle rest energy, we 
note that the familiar non-relativistic (ultra-relativistic) one-particle partition function 
is regained from equation (4) if we substitute K z  by the first term of equation ( 5 )  
(equation (6 ) ) .  Corrections to these limits can be obtained retaining higher order terms 
in the asymptotic and ascending series for K2(t). We will return to discuss this point 
later on with more details since this is the crux of the problem. 

The integral resulting from the substitution of equation (4) into equation (1) can be 
evaluated by closing the straight line contour to the right with a semi-arc of a circle. 
Because of the analytic behaviour of the K,, the integrand of equation (1) is an analytic 
function on the right half t-plane except at t = n ;  n = 1 , 2 , 3 , .  . . where it has simple 
poles due to the factor cot(vt). The application of Cauchy's theorem gives the following 
expression for In E: 

From the requirement that the integral along this semi-circle vanishes when the radius 
goes to infinity, one derives that 5 4 mc . This condition on 5 coincides with the 
physical requirement that the chemical potential should never exceed the minimum 
energy of the particles so that the occupation number be always positive. Other 
quantities of interest, such as the entropy, the pressure, the average number of particles 
present in the system, are obtained from the thermodynamic potential R by suitable 
partial differentiation, e.g. 

2 

N s - ( ~ )  - aR =- 47r3Vg 2 Kz(nu)  ePtn 
T,V A c U  n = l  n 

4 r v g  ePEn 

Acu ,,=I n 
E = TS - FV + = T p -  1 -[K2(nu) - nuK; (nu)]  

( 9 4  
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Below the critical temperature we must add to equation ( 9 a )  the contribution 

- exp[-p(mc2 - 5)D = U / P )  
from the zero momentum state which is lost when one transforms the summation into an 
integral over the energy in Zl(p). This formalism has been recently used to discuss the 
case of a boson gas confined in an Einstein universe (Araglo de Carvalho and Goulart 
Rosa 1980). 

3. Special cases 

The formulae in the previous section are exact and well known (Glaser 1935). This 
being the case, it is important to investigate how these expressions approach their 
classical limit, so as to identify the purely quantum-mechanical contributions to the 
thermodynamic functions. Furthermore, we can compute their non-relativistic and 
ultra-relativistic limits, thus obtaining simplified formulae which have been used in a 
large number of physical applications. 

There are three characteristic lengths in the system: the Compton wavelength, the 
average distance between particles h E ( V/N)1’3 and the thermal wavelength AT= h/p 
where p is the average momentum (in modulus): 

In the non-relativistic approximation E, = p 2 / 2 m  the thermal de Broglie wavelength is 
recovered [ 2 A ~ / n  = (h2 /27rmk~T)1’2] .  The use of the photon dispersion relation in 
equation (10 )  gives A T  = hc /3kBT .  The relationships between these lengths will alone 
specify the different regimes of the system. 

The classical limit of the expressions must correspond to a physical situation in 
which the average distance between particles in the gas by far exceeds the thermal 
wavelength (h >>AT) .  It is clear that in this case the wavefunctions of the particles in the 
gas will have little overlap, allowing for a classical treatment. If, however, h < AT there 
will be considerable overlap and quantum-mechanical effects become very important. 
We will see that the classical limit corresponds to restricting the sums over n appearing 
in equations ( 9 )  to just one term ( n  = 1). In this limit we recover the Boltzmann 
distribution and the condition h >>AT is satisfied. 

Non-relativistic and ultra-relativistic limits are purely kinematical ones which can 
be taken whether we are dealing with a fully quantum expression or its classical form. 
They correspond to cases in which pc is either much smaller or much greater than mc2. 
We can characterise those limits by comparing the thermal wavelength AT of the system 
with the Compton wavelength A, associated with each particle: (i) A7 >> A c +  non- 
relativistic; (ii) A T  << A ,  =+ ultra-relativistic. 

Before we proceed to treat each case individually, two comments are in order: ( a )  by 
forming all possible combinations with the parameters h, AT and A, we can discuss the 
limiting cases of interest: these are shown in figure 1 ; ( 6 )  taking appropriate limits in the 
expressions of D 2 allows us to have complete control over the corrections to these 
limits, whereas this information is lost if we start out using asymptotic dispersion 
relations such as E = p 2 / 2 m  or E = pc.  In our calculations we have avoided performing 
any disfiguring approximation on the dispersion relation (equation ( 2 ) ) .  
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Figure 1. 

3.1. The Boltzmann limit 

The classical limit of the system is obtained by retaining only the first term in the 
expressions for the thermodynamic functions. This can be shown if we consider, for 
instance, the particle number N, As is well known, the Boltzmann distribution can be 
obtained by expanding the Bose-Einstein distribution nl = X l ( l  -XI)-’ for X I  << 1,  
X, = exp p ( [  - E l )  and keeping the first term only. There N will be written as: 

fi = ri l  =ePE e-pEc = ePE(4.rVg/Ac”)(K2(u)/u) (11) 
I  I  

which is the first term in equation (9d). The higher order terms of the fugacity series are 
to be associated with quantum corrections to the classical expressions. 

The argument U of the modified Bessel functions is simply related to the ratio of A T  
and A,, i.e. U = ( ~ / T ) ( A ~ ~ / A , ) *  or U = (3AyR/Ac), where A F R  and A Y R  are, respectively, 
the non-relativistic and the ultra-relativistic forms of AT.  If U >> 1 the asymptotic 
expansion for Kz can be used, resulting in an expansion for the thermodynamic 
functions in powers of U - *  where the first terms are the familiar non-relativistic 
expressions and the others are relativistic corrections. On the other hand, for U << 1 the 
ascending power series for K2 will produce a perturbative expansion in powers of U 

where the first term will be the massless particle gas expression. 
One word of caution must be said concerning the way of carrying out this limiting 

operation in the expressions for entropy, energy and, in general, for the derivatives with 
respect to temperature of the free energy. The recurrence relation for K2 and its 
derivative must be used before using the asymptotic expansion for large arguments or, 
in other words, as a general rule all approximations shall be carried out only as the last 
step in our calculations. 

4. The quantum limit 

We shall now extend the same procedures for carrying out the NR and UR limits to the 
exact quantum expressions for the thermodynamic functions. Let us consider first the 
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NR limit. We stress the fact that the summation index n in equations ( 9 )  appears also in 
the argument of the Bessel functions multiplying the parameter U = mc2/kBT and that 
a large value for U can be obtained lowering the temperature and/or increasing the 
mass. This already suggests that, for a fixed non-zero mass and in the limit of very low 
(zero) temperature, non-relativistic effects cannot be neglected. The non-relativistic 
limit is easily obtained replacing each K2 appeaiing in the fugacity series of the 
thermodynamic functions by their asymptotic expansions. The presence of the 
exponential term in equation ( 5 ) ,  and the fact that the asymptotic expansion becomes an 
even better representation the larger the value of n, make the expansion converge for all 
allowed values of 5. The summation over n can be carried out and written in terms of 
the Bose-Einstein function F,(cy). 

where 

and l ( z )  is the Riemann zeta function. There is no novelty in the above expression and 
it is just a duplication of Glaser’s result. Even so we stress the important fact that this is 
the equation which gives the correct zero temperature (U + a) behaviour of the massive 
boson gas. The non-observance of this simple fact would lead us to reproduce the 
results of the literature together with their unsurmountable difficulties. 

The UR limit is a little more subtle as we will now see. To obtain an expression for 
In Z in this approximation we make use in equation (8) of equations (6) and (7). For 
very small values of t = nu, only the first few terms in the ascending series for K2 are 
important and keeping them should result in an expansion for In 3 in terms of U. There 
is no problem in carrying out the summation over the fugacity index in the equation for 
In E provided we restrict the chemical potential further in order to have convergence of 
the sums. Actually for a given value of nu << 1 only the first terms in equations (6) and 
(7) will give significant contributions. But as n keeps increasing, deviations from the 
approximate expression for K2 start to occur and higher order terms should be taken 
into account. However, this can be remedied by choosing the value of 5 < 0 such that 
the exponential factor exp pn5 is very small so that the higher order contributions are 
negligible; the closer 5 is to the origin, the poorer is the ability of the exponential term to 
guarantee the convergence and higher order terms of the expansion for K 2  must be 
taken into account. The leading terms of the resulting expression are once again 
represented in terms of the Bose-Einstein functions. 

whereA=[4(1)+$(3) ] /2+ln2  and cu’=-p& 
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In the limit of zero mass only the first term survives, yielding the familiar expression 

Comparison of our results with those of Glaser and Landsberg and Dunning-Davies 
for the photon gas. 

(hereafter LDD) is best achieved through the average number of particles: 

Several remarks are in order: In their approximate expression for N, LDD have 
found a linear term-F2(a)u-and taking their calculations one step further a positive 
quadratic term au2F1(a:) is obtained. The argument of the Bose-Einstein function in 
their expression is a: = P(mc2- 5); recalling that F,(O) = [((T) and [(l) = CO we 
immediately see that any analysis of the behaviour of the system at and below the 
critical temperature which takes into consideration other terms than the photon 
contribution must be wrong. Moreover, for higher order correction terms the diver- 
gence of the coefficient (B-E functions) is even worse at T s T,. This is not surprising 
since their approximate expression is obtained by binomial expansion of the density of 
states and then performing an integration term by term over the (forbidden) region 
[0,2u] of the energy spectrum which lies outside the radius of convergence of the 
expansion. 

The difference between our results can be seen clearly noting that their expression 
for N can also be obtained from equation ( 9 4 ,  expanding both the exponential and the 
Bessel functions for small arguments and then carrying out the summation over n. This 
procedure is unacceptable as we have remarked before and leads to the unwanted 
divergences. 

Both LDD and Glaser’s techniques for discussing the UR limit are based on the 
binomial expansion of the density of states followed by the thermal average integration. 
Even so, their results are not in agreement. In Glaser’s work the restriction of a 
non-positive chemical imposed in order to avoid a divergence in the first correction to 
the photon term is the result also of unjustified approximations. In his evaluation of the 
integral ~~,,k,rexp(--(Y) da: the factor exp(neo/kT) which should appear in the answer 
is approximated by one before carrying out the summation over n. Its inclusion would 
shift again the upper bound for 6 from zero to mc2 and thus lead to a divergent 
second-order term in N. 

In conclusion we can say that all of the above discrepancies can be traced back to the 
fact that their approximations are made at the level of the density of states. Clearly that 
procedure destroys some of the characteristic features of the exact density of states in 
the low-energy part of the spectrum such as the value of the function D ( E )  and the sign 
of the curvature at E,,, = mc , It is known (Rino et a1 1977) that Bose-Einstein 
condensation and the low-temperature behaviour of the system are determined by the 
shape of the density of states in the neighbourhood of E,,,. Therefore, any 
modification of the function in this region will bring drastic changes in the low- 
temperature behaviour of the system. No matter how small the mass, the density of 
states is a concave function below E = (3/2)1’2mc2 being zero and having an infinite 
derivative at E,,, = mc . Thus, carrying out approximations which change these 
characteristics of the non-relativistic region of D ( E )  will not produce the correct results 

2 

2 
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to describe the system in the limit of low temperature. From what we have discussed so 
far it is now clear that equation (14) does not describe the critical region 5 = mc2 of the 
system, except for the case m = 0 where its first term is equal to the exact expression for 
the photon gas. In this case the critical temperature is obtained by setting a' = -p[ = 0 
in the equation for the average particle number: 

which states nothing but that A Y R  =I. (In the NR limit the criticality condition can also 
be expressed as A Y R  = I, also up to a number.) 

For massive and highly dense gases, considering that the leading corrections are of 
second order, we expect that the photon term gives an accurate description of the 
behaviour of the system in the critical region T 6 T,, e.g. the number of particles in the 
condensate is given by 

However, as kBT, is lowered and approaches the region where the density of states 
changes convexity, the deviations and corrections to the photon terms become 
important. Although no simple analytical expression for this region can be obtained we 
want to indicate how the exact equation can be correctly approximated and numerically 
evaluated to describe this situation. Besides setting [ = mc2 we can split the summation 
over n into two: the first going from y1 = 1 to y1u = 1 where U = A T / A ,  so we can 
approximate K2 by its small argument expansion. The number of terms to be consi- 
dered will depend of course on the precise nature of the calculation. From n = u- l  to 
infinity we use the asymptotic expansion for K 2 .  These two terms essentially give the 
amount of mixture of UR and NR effects respectively. 

For kBTc well below the minimum energy the NR limit applies and we get the well 
known results, e.g. 

where we have remarked that this equation is also correct in the zero temperature limit. 

5. Discussion 

The expressions for the thermodynamic functions of the relativistic Bose gas are 
derived from the exact expression for the free energy of the system. The non-relativistic 
and ultra-relativistic limits are carried out directly from the exact results avoiding the 
procedure of expanding the density of states as in previous WO *ks. The discrepancies 
between our results and those by Glaser and Landsberg and Dun,iing-Davies are traced 
back to unjustified approximations involving the expansion and truncation of the 
density of states before the evaluation of the thermal averages. The realisation that 
previous results were also inappropriate to discuss the system below its critical 
temperature has led us to investigate its degenerate behaviour. We also show that the 
behaviour of the gas made up of massive particles in the limit of zero temperature is 
always non-relativistic. Upon completion of this paper we became aware of the work by 
Bechmann et a1 (1979) which treated the same system. 
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